Архив рубрики: Изгиб. Поперечный изгиб стержня Внутренние силовые факторы при изгибе балки

Прямой поперечный изгиб возникает в случае, когда все нагрузки приложены перпендикулярно оси стержня, лежат в одной плоскости и, кроме того, плоскость их действия совпадает с одной из главных центральных осей инерции сечения. Прямой поперечный изгиб относится к простому виду сопротивления и является плоским напряженным состоянием , т.е. два главных напряжения отличны от нуля. При таком виде деформации возникают внутренние усилия: поперечная сила и изгибающий момент. Частным случаем прямого поперечного изгиба является чистый изгиб , при таком сопротивлении имеются грузовые участки, в пределах которых поперечное усилие обращается в ноль, а изгибающий момент отличен от нуля. В поперечных сечениях стержней при прямом поперечном изгибе возникают нормальные и касательные напряжения. Напряжения являются функцией от внутреннего усилия, в данном случае нормальные – функцией от изгибающего момента, а касательные - от поперечной силы. При прямом поперечном изгибе вводятся несколько гипотез:

1) Поперечные сечения балки, плоские до деформации, остаются плоскими и ортогональными к нейтральному слою после деформации (гипотеза плоских сечений или гипотеза Я. Бернулли). Эта гипотеза выполняется при чистом изгибе и нарушается при возникновении поперечной силы, касательных напряжений, и появлением угловой деформации.

2) Взаимное давление между продольными слоями отсутствует (гипотеза о ненадавливании волокон). Из этой гипотезы следует, что продольные волокна испытывают одноосное растяжение или сжатие, следовательно, при чистом изгибе справедлив закон Гука .

Стержень, испытывающий изгиб, называют балкой . При изгибе одна часть волокон растягивается, другая часть – сжимается. Слой волокон, находящийся между растянутыми и сжатыми волокнами, называют нейтральным слоем , он проходит через центр тяжести сечений. Линию пересечения его с поперечным сечением балки называют нейтральной осью . На основе введенных гипотез при чистом изгибе получена формула для определения нормальных напряжений, которая применяется и при прямом поперечном изгибе. Нормальное напряжение можно найти с помощью линейной зависимости (1), в которой отношение изгибающего момента к осевому моменту инерции (
) в конкретном сечении является величиной постоянной, а расстояние (y ) вдоль оси ординат от центра тяжести сечения до точки, в которой определяют напряжение, меняется от 0 до
.

. (1)

Для определения касательного напряжения при изгибе в 1856г. русским инженером – строителем мостов Д.И. Журавским была получена зависимость

. (2)

Касательное напряжение в конкретном сечении не зависит от отношения поперечной силы к осевому моменту инерции (
), т.к. эта величина в пределах одного сечения не меняется, а зависит от отношения статического момента площади отсеченной части к ширине сечения на уровне отсеченной части (
).

При прямом поперечном изгибе возникают перемещения: прогибы (v ) и углы поворотов (Θ ) . Для их определения используют уравнения метода начальных параметров (3), которые получены путем интегрирования дифференциального уравнения изогнутой оси балки (
).

Здесь v 0 , Θ 0 , М 0 , Q 0 – начальные параметры, x расстояние от начала координат до сечения, в котором определяется перемещение, a – расстояние от начала координат до места приложения или начала действия нагрузки.

Расчет на прочность и жесткость производят с помощью условий прочности и жесткости. С помощью этих условий можно решать поверочные задачи (выполнять проверку выполнения условия), определять размер поперечного сечения или подбирать допустимое значение параметра нагрузки. Условий прочности различают несколько, некоторые из них приведены ниже. Условие прочности по нормальным напряжениям имеет вид:

, (4)

здесь
момент сопротивления сечения относительно оси z, R – расчетное сопротивление по нормальным напряжениям.

Условие прочности по касательным напряжениям выглядит как:

, (5)

здесь обозначения те же, что и в формуле Журавского, а R s – расчетное сопротивление срезу или расчетное сопротивление по касательным напряжениям.

Условие прочности по третьей гипотезе прочности или гипотезе наибольших касательных напряжений можно записать в следующем виде:

. (6)

Условия жесткости можно записать для прогибов (v ) и углов поворота (Θ ) :

где значения перемещений в квадратных скобках являются допустимыми.

Пример выполнения индивидуального задания № 4 (срок 2-8 неделя)

Деформация изгиба заключается в искривлении оси прямого стержня или в изменении начальной кривизны прямого стержня (рис. 6.1). Ознакомимся с основными понятиями, которые используются при рассмотрении деформации изгиба.

Стержни, работающие на изгиб, называют балками .

Чистым называется изгиб, при котором изгибающий момент является единственным внутренним силовым фактором, возникающем в поперечном сечении балки.

Чаще, в поперечном сечении стержня наряду с изгибающим моментом возникает также и поперечная сила. Такой изгиб называют поперечным.

Плоским (прямым) называют изгиб, когда плоскость действия изгибающего момента в поперечном сечении проходит через одну из главных центральных осей поперечного сечения.

При косом изгибе плоскость действия изгибающего момента пересекает поперечное сечение балки по линии, не совпадающей ни с одной из главных центральных осей поперечного сечения.

Изучение деформации изгиба начнем со случая чистого плоского изгиба.

Нормальные напряжения и деформации при чистом изгибе.

Как уже было сказано, при чистом плоском изгибе в поперечном сечении из шести внутренних силовых факторов не равен нулю только изгибающий момент (рис. 6.1, в):

Опыты, поставленные на эластичных моделях, показывают, что если на поверхность модели нанести сетку линий (рис. 6.1, а), то при чистом изгибе она деформируется следующим образом (рис. 6.1, б):

а) продольные линии искривляются по длине окружности;

б) контуры поперечных сечений остаются плоскими;

в) линии контуров сечений всюду пересекаются с продольными волокнами под прямым углом.

На основании этого можно предположить, что при чистом изгибе поперечные сечения балки остаются плоскими и поворачиваются так, что остаются нормальными к изогнутой оси балки (гипотеза плоских сечений при изгибе).

Рис. 6.1

Замеряя длину продольных линий (рис. 6.1, б), можно обнаружить, что верхние волокна при деформации изгиба балки удлиняются, а нижние укорачиваются. Очевидно, что можно найти такие волокна, длина которых остается неизменной. Совокупность волокон, не меняющих своей длины при изгибе балки, называется нейтральным слоем (н. с.) . Нейтральный слой пересекает поперечное сечение балки по прямой, которая называетсянейтральной линией (н. л.) сечения .

Для вывода формулы, определяющей величину нормальных напряжений, возникающих в поперечном сечении, рассмотрим участок балки в деформированном и не деформированном состоянии (рис. 6.2).

Рис. 6.2

Двумя бесконечно малыми поперечными сечениями выделим элемент длиной
. До деформации сечения, ограничивающие элемент
, были параллельны между собой (рис. 6.2, а), а после деформации они несколько наклонились, образуя угол
. Длина волокон, лежащих в нейтральном слое, при изгибе не меняется
. Обозначим радиус кривизны следа нейтрального слоя на плоскости чертежа буквой. Определим линейную деформацию произвольного волокна
, отстоящего на расстоянииот нейтрального слоя.

Длина этого волокна после деформации (длина дуги
) равна
. Учитывая, что до деформации все волокна имели одинаковую длину
, получим, что абсолютное удлинение рассматриваемого волокна

Его относительная деформация

Очевидно, что
, так как длина волокна, лежащего в нейтральном слое не изменилась. Тогда после подстановки
получим

(6.2)

Следовательно, относительная продольная деформация пропорциональна расстоянию волокна от нейтральной оси.

Введем предположение, что при изгибе продольные волокна не надавливают друг на друга. При таком предположении каждое волокно деформируется изолировано, испытывая простое растяжение или сжатие, при котором
. С учетом (6.2)

, (6.3)

т. е. нормальные напряжения прямо пропорциональны расстояниям рассматриваемых точек сечения от нейтральной оси.

Подставим зависимость (6.3) в выражение изгибающего момента
в поперечном сечении (6.1)

.

Вспомним, что интеграл
представляет собой момент инерции сечения относительно оси

.

(6.4)

Зависимость (6.4) представляет собой закон Гука при изгибе, поскольку она связывает деформацию (кривизну нейтрального слоя
) с действующим в сечении моментом. Произведение
носит название жесткости сечения при изгибе, Н·м 2 .

Подставим (6.4) в (6.3)

(6.5)

Это и есть искомая формула для определения нормальных напряжений при чистом изгибе балки в любой точке ее сечения.

Для того, чтобы установить, где в поперечном сечении находится нейтральная линия подставим значение нормальных напряжений в выражение продольной силы
и изгибающего момента

Поскольку
,

;

(6.6)

(6.7)

Равенство (6.6) указывает, что ось – нейтральная ось сечения – проходит через центр тяжести поперечного сечения.

Равенство (6.7) показывает что и- главные центральные оси сечения.

Согласно (6.5) наибольшей величины напряжения достигают в волокнах наиболее удаленных от нейтральной линии

Отношение представляет собой осевой момент сопротивления сеченияотносительно его центральной оси, значит

Значение для простейших поперечных сечений следующее:

Для прямоугольного поперечного сечения

, (6.8)

где - сторона сечения перпендикулярная оси;

- сторона сечения параллельная оси;

Для круглого поперечного сечения

, (6.9)

где - диаметр круглого поперечного сечения.

Условие прочности по нормальным напряжениям при изгибе можно записать в виде

(6.10)

Все полученные формулы получены для случая чистого изгиба прямого стержня. Действие же поперечной силы приводит к тому, что гипотезы, положенные в основу выводов, теряют свою силу. Однако практика расчетов показывает, что и при поперечном изгибе балок и рам, когда в сечении кроме изгибающего момента
действует еще продольная сила
и поперечная сила, можно пользоваться формулами, приведенными для чистого изгиба. Погрешность при этом получается незначительной.

Изгибом называется вид деформации, при котором искривляется продольная ось бруса. Прямые брусья, работающие на изгиб, называются балками. Прямым изгибом называется изгиб, при котором внешние силы, действующие на балку, лежат в одной плоскости (силовой плоскости), проходящей через продольную ось балки и главную центральную ось инерции поперечного сечения.

Изгиб называется чистым , если в любом поперечном сечении балки возникает только один изгибающий момент.

Изгиб, при котором в поперечном сечении балки одновременно действуют изгибающий момент и поперечная сила, называется поперечным . Линия пересечения силовой плоскости и плоскости поперечного сечения называется силовой линией .

Внутренние силовые факторы при изгибе балки.

При плоском поперечном изгибе в сечениях балки возникают два внутренних силовых фактора: поперечная сила Q и изгибающий момент М. Для их определения используют метод сечений (см. лекцию 1). Поперечная сила Q в сечении балки равна алгебраической сумме проекций на плоскость сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для поперечных сил Q:

Изгибающий момент М в сечении балки равен алгебраической сумме моментов относительно центра тяжести этого сечения всех внешних сил, действующих по одну сторону от рассматриваемого сечения.

Правило знаков для изгибающих моментов M:

Дифференциальные зависимости Журавского.

Между интенсивностью q распределенной нагрузки, выражениями для поперечной силы Q и изгибающего момента М установлены дифференциальные зависимости:

На основе этих зависимостей можно выделить следующие общие закономерности эпюр поперечных сил Q и изгибающих моментов М:

Особенности эпюр внутренних силовых факторов при изгибе.

1. На участке балки, где нет распределенной нагрузки, эпюра Q представлена прямой линией , параллельной базе эпюре, а эпюра М - наклонной прямой (рис. а).

2. В сечении, где приложена сосредоточенная сила, на эпюре Q должен быть скачок , равный значению этой силы, а на эпюре М -точка перелома (рис. а).

3. В сечении, где приложен сосредоточенный момент, значение Q не изменяется, а эпюра М имеет скачок , равный значению этого момента, (рис. 26, б).

4. На участке балки с распределенной нагрузкой интенсивности q эпюра Q изменяется по линейному закону, а эпюра М - по параболическому, причем выпуклость параболы направлена навстречу направлению распределенной нагрузки (рис. в, г).

5. Если в пределах характерного участка эпюра Q пересекает базу эпюры, то в сечении, где Q = 0, изгибающий момент имеет экстремальное значение M max или M min (рис. г).

Нормальные напряжения при изгибе.

Определяются по формуле:

Моментом сопротивления сечения изгибу называется величина:

Опасным сечением при изгибе называется поперечное сечение бруса, в котором возникает максимальное нормальное напряжение.

Касательные напряжения при прямом изгибе.

Определяются по формуле Журавского для касательных напряжений при прямом изгибе балки:

где S отс - статический момент поперечной площади отсеченного слоя продольных волокон относительно нейтральной линии.

Расчеты на прочность при изгибе.

1. При проверочном расчете определяется максимальное расчетное напряжение, которое сравнивается с допускаемым напряжением:

2. При проектном расчете подбор сечения бруса производится из условия:

3. При определении допускаемой нагрузки допускаемый изгибающий момент определяется из условия:

Перемещения при изгибе.

Под действием нагрузки при изгибе ось балки искривляется. При этом наблюдается растяжение волокон на выпуклой и сжатие - на вогнутой частях балки. Кроме того, происходит вертикальное перемещение центров тяжести поперечных сечений и их поворот относительно нейтральной оси. Для характеристики деформации при изгибе используют следующие понятия:

Прогиб балки Y - перемещение центра тяжести поперечного сечения балки в направлении, перпендикулярном к ее оси.

Прогиб считают положительным, если перемещение центра тяжести происходит вверх. Величина прогиба меняется по длине балки, т.е. y = y (z)

Угол поворота сечения - угол θ, на который каждое сечение поворачивается по отношению к своему первоначальному положению. Угол поворота считают положительным при повороте сечения против хода часовой стрелки. Величина угла поворота меняется по длине балки, являясь функцией θ = θ (z).

Самыми распространёнными способами определения перемещений является метод Мора и правило Верещагина .

Метод Мора.

Порядок определения перемещений по методу Мора:

1. Строится «вспомогательная система» и нагружается единичной нагрузкой в точке, где требуется определить перемещение. Если определяется линейное перемещение, то в его направлении прикладывается единичная сила, при определении угловых перемещений – единичный момент.

2. Для каждого участка системы записываются выражения изгибающих моментов М f от приложенной нагрузки и М 1 - от единичной нагрузки.

3. По всем участкам системы вычисляют и суммируют интегралы Мора, получая в результате искомое перемещение:

4. Если вычисленное перемещение имеет положительный знак, то это значит, что его направление совпадает с направлением единичной силы. Отрицательный знак указывает на то, что действительное перемещение противоположно направлению единичной силы.

Правило Верещагина.

Для случая, когда эпюра изгибающих моментов от заданной нагрузки имеет произвольное, а от единичной нагрузки – прямолинейное очертание, удобно использовать графоаналитический способ, или правило Верещагина.

где A f – площадь эпюры изгибающего момента М f от заданной нагрузки; y c – ордината эпюры от единичной нагрузки под центром тяжести эпюры М f ; EI x – жесткость сечения участка балки. Вычисления по этой формуле производятся по участкам, на каждом из которых прямолинейная эпюра должна быть без переломов. Величина (A f *y c) считается положительной, если обе эпюры располагаются по одну сторону от балки, отрицательной, если они располагаются по разные стороны. Положительный результат перемножения эпюр означает, что направление перемещения совпадает с направлением единичной силы (или момента). Сложная эпюра М f должна быть разбита на простые фигуры(применяется так называемое "расслоение эпюры"), для каждой из которых легко определить ординату центра тяжести. При этом площадь каждой фигуры умножается на ординату под ее центром тяжести.

Классификация видов изгиба стержня

Изгибом называют такой вид деформации, при котором в поперечных сечениях стержня возникают изгибающие моменты. Стержень, работающий на изгиб, принято называть балкой. Если изгибающие моменты - единственные внутренние силовые факторы в поперечных сечениях, то стержень испытывает чистый изгиб. Если же изгибающие моменты возникают совместно с поперечными силами, то такой изгиб называют поперечным.

На изгиб работают балки, оси, валы и другие детали конструкций.

Введем некоторые понятия. Плоскость, проходящая через одну из главных центральных осей сечения и геометрическую ось стержня, называется главной плоскостью. Плоскость, в которой действуют внешние нагрузки, вызывающие изгиб балки, называется силовой плоскостью. Линия пересечения силовой плоскости с плоскостью поперечного сечения стержня носит название силовой линии. В зависимости от взаимного расположения силовой и главных плоскостей балки различают прямой или косой изгиб. Если силовая плоскость совпадает с одной из главных плоскостей, то стержень испытывает прямой изгиб (рис. 5.1, а ), если же не совпадает - косой (рис. 5.1, б).

Рис. 5.1. Изгиб стержня: а - прямой; б - косой

С геометрической точки зрения изгиб стержня сопровождается изменением кривизны оси стержня. Первоначально прямолинейная ось стержня становится криволинейной при его изгибе. При прямом изгибе изогнутая ось стержня лежит в силовой плоскости, при косом - в плоскости, отличной от силовой.

Наблюдая за изгибом резинового стержня, можно заметить, что часть его продольных волокон растягивается, а другая часть сжимается. Очевидно, между растянутыми и сжатыми волокнами стержня существует слой волокон, не испытывающих ни растяжения, ни сжатия, - так называемый нейтральный слой. Линия пересечения нейтрального слоя стержня с плоскостью его поперечного сечения называется нейтральной линией сечения.

Как правило, действующие на балку нагрузки можно отнести к одному из трех видов: сосредоточенные силы Р, сосредоточенные моменты М распределенные нагрузки интенсивностью ц (рис. 5.2). Часть I балки, расположенную между опорами, называют пролетом, часть II балки, расположенную по одну сторону от опоры, - консолью.

При изгибе стержни подвергаются воздействию поперечной силы или изгибающего момента. Изгиб называется чистым, если действует только изгибающий момент, и поперечным, если действует нагрузка, перпендикулярная оси стержня. Брус (стержень), работающий на изгиб, обычно называют балкой. Балки являются наиболее часто встречающимися элементами сооружений и машин, воспринимающими нагрузки от других элементов конструкций и, передающими их тем частям, которые поддерживают балку (чаще всего опорам).

В строительных сооружениях и машиностроительных конструкциях чаше всего можно встретить следующие случаи крепления балок: консольные - с одним защемленным концом (с жесткой заделкой), двухопорные - с одной шарнирно-неподвижной опорой и с одной шарнирно-подвижной опорой и многоопорные балки. Если опорные реакции могут быть найдены из одних уравнений статики, то балки называют статически определимыми. Если же число неизвестных опорных реакций больше, чем число уравнений статики, то такие балки называют статически неопределимыми. Для определения реакций в таких балках приходится составлять дополнительные уравнения - уравнения перемещений. При плоском поперечном изгибе все внешние нагрузки перпендикулярны к оси балки.

Определение внутренних силовых факторов, действующих в поперечных сечениях балки, следует начинать с определения опорных реакций. После этого используем метод сечений, мысленно рассекаем, балку на две части и рассматриваем равновесие одной части. Взаимодействие частей балки заменяем внутренними факторами: изгибающим моментом и поперечной силой.

Поперечная сила в сечении равна алгебраической сумме проекций всех сил, а изгибающий момент равен алгебраической сумме моментов всех сил, расположенных по одну сторону от сечения. Знаки действующих сил и моментов следует определять в соответствии с принятыми правилами. Необходимо научиться правильно определять равнодействующую силу и изгибающий момент от равномерно распределенной по длине балки нагрузки.



Следует иметь в виду, что при определении напряжений, возникающих при изгибе, принимают следующие допущения: сечения плоские до изгиба остаются плоскими и после изгиба (гипотеза плоских сечений); продольные соседние волокна не давят одно на другое; зависимость между напряжениями и деформациями линейная.

При изучении изгиба следует обратить внимание на неравномерность распределения нормальных напряжений в поперечном сечении балки. Нормальные напряжения изменяются по высоте поперечного сечения пропорционально расстоянию от нейтральной оси. Следует уметь определять напряжения изгиба, которые зависят от величины действующего изгибающего момента М И и момента сопротивления сечения при изгибе W О (осевой момент сопротивления сечения).

Условие прочности при изгибе: σ = М И / W О £ [σ] . Значение W О зависит от размеров, формы и расположения поперечного сечения относительно оси.

Наличие поперечной силы, действующей на балку, связано с возникновением касательных напряжений в поперечных сечениях, а по закону парности касательных напряжений - и в продольных сечениях. Касательные напряжения определяют по формуле Д. И. Журавского.

Поперечная сила сдвигает рассматриваемое сечение относительно смежного. Изгибающий момент, складывающийся из элементарных нормальных усилий, возникающих в поперечном сечении балки, поворачивает сечение относительно смежного, чем и обусловлено искривление оси балки, т. е. ее изгиб.

Когда балка испытывает чистый изгиб, то по всей длине балки или на отдельном ее участке в каждом сечении действует изгибающий момент постоянной величины, а поперечная сила в любом сечении данного участка равна нулю. При этом в поперечных сечениях балки возникают только нормальные напряжения.

Для того чтобы глубже разобраться в физических явлениях изгиба и в методике решения задач при расчете на прочность и жесткость, необходимо хорошо усвоить геометрические характеристики плоских сечений, а именно: статические моменты сечений, моменты инерции сечений простейшей формы и сложных сечений, определение центра тяжести фигур, главные моменты инерции сечений и главные оси инерции, центробежный момент инерции, изменение моментов инерции при повороте осей, теоремы о переносе осей.

При изучении этого раздела следует научиться правильно строить эпюры изгибающих моментов и поперечных сил, определять опасные сечения и действующие в них напряжения. Помимо определения напряжений следует научиться определять перемещения (прогибы балки) при изгибе. Для этого используется дифференциальное уравнение изогнутой оси балки (упругой линии), записанное в общем виде.

Для определения прогибов проводится интегрирование уравнения упругой линии. При этом следует правильно определять постоянные интегрирования С и D исходя из условий опирания балки (граничных условий). Зная величины С и D , можно определить угол поворота и прогиб любого сечения балки. Изучение сложного сопротивления обычно начинают с косого изгиба.

Явление косого изгиба особенно опасно для сечений со значительно отличающимися друг от друга главными моментами инерции; балки с таким сечением хорошо работают на изгиб в плоскости наибольшей жесткости, но даже при небольших углах наклона плоскости внешних сил к плоскости наибольшей жесткости в балках возникают значительные дополнительные напряжения и деформации. Для балки круглого сечения косой изгиб невозможен, так как все центральные оси такого сечения являются главными и нейтральный слой всегда будет перпендикулярен плоскости внешних сил. Косой изгиб невозможен и для балки квадратного сечения.

При определении напряжений в случае внецентренного растяжения или сжатия необходимо знать положение главных центральных осей сечения; именно от этих осей отсчитывают расстояния точки приложения силы и точки, в которой определяют напряжения.

Приложенная эксцентрично сжимающая сила может вызвать в поперечном сечении стержня растягивающие напряжения. В связи с этим внецентренное сжатие является особенно опасным для стержней из хрупких материалов, которые слабо сопротивляются растягивающим усилиям.

В заключение следует изучить случай сложного сопротивления, когда тело испытывает одновременно несколько деформаций: например, изгиб совместно с кручением, растяжение-сжатие совместно с изгибом и т. д. При этом следует иметь в виду, что изгибающие моменты, действующие в различных плоскостях, могут складываться как векторы.

error: